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Abstract — This paper will addres the use of mixed
lumped and distributed elements in the matching equalizers
of microwave amplifers for hybrid and monolithic MIC
realizations. In this work we show how the computer aided
real frequency technique can be extended to design
broadband amplifiers employing distributed equalizers with
lumped discontinuities. The scattering based two-variable
description of lossless equalizers with mixed lumped-
distributed elements will be discussed and the potential
benefits of the approach will be indicated by examples.

[. INTRODUCTION

Because of the need for miniaturization of large-scale
microwave systems, there is a great deal of effort being
directed towards the area of Microwave Integrated Circuits
(MIC) in hybrid or monolithic form. MIC design of
amplifiers require that active and passive device models
are fully developed and the circuit-design approach is
through and well disciplined. In the design process,
besides the active devices, refined models are needed for
treatment of device to circuit medium interfaces
incorporating parasitic effects and junction discontinuities.
In this regard, utilization of mixed lumped and distributed
circuits to model the front-end, back-end and interstage
equalizers of an amplifier and the interconnects, would
offer advantages for accurate simulation of MIC layouts,
where the physical sizes, parasitics and discontinuities are
naturally embedded in the design process.

In the well known real frequency design techniques, the
complex variable p=0+jw is employed in the
descriptive network functions, which yields lumped
element circuit components in matching equalizers.
Utilizing the hybrid or monolithic integrated circuit
production technologies, it is possible to built lumped
circuit elements up to 10 GHz. Beyond these frequencies
however, physical sizes must be included in the design
process. In this case, equal delay transmission lines are
employed in the designs, where the complex variable p is
replaced with the Richard variable A=Z+jQ,
where Q = tanwT and T specifies the equal delay length of

transmission lines. For a more accurate simulation of the
MIC layout, mixed lumped and distributed elements need
to be used, where the physical connection of lumped
elements can be covered with transmission lines and
parasitic of the discontinuities can be imbedded into
lumped elements. In this case, it is necessary to carry out
all the designs in at least two variables namely, p for
lumped elements and A for equal delay transmission lines.

In this work we show how the computer aided real
frequency technique for broadband amplifiers can be
extended to design distributed equalizers with lumped
discontinuities.  Considering a  general amplifier
configuration with front-end and back-end equalizers of
mixed lumped-distributed element type, the proposed
design procedure involves the following major steps:

The active device is assumed to be characterized by a
set of measured scattering data. The mixed element
equalizers on the other hand are described by the
scattering functions in two complex frequency variables,
namely the conventional p for the lumped elements and A
for the transmission lines. Then, the formulation of the
simplified real frequency algorithm is extended to the
two-variable description of the equalizers, where the
partially defined polynomials describing the scattering
functions in two-varibles are constructed by optimization
of the transducer power gain of the overall amplifier
structure together with matching equalizers.

II. CONSTRUCTION OF TWO-VARIABLE
SCATTERING FUNCTIONS FOR LOSSLESS TWO-
PORTS FORMED WITH LUMPED AND
DISTRIBUTED ELEMENTS

A typical distributed equalizer network with lumped
discontinuities can be modeled in the generic form of a
lossless two-port formed with cascade connections of
lumped elements and commensurate transmission lines
(Unit Elements), where the lumped elements represent the
discontinuities in the cascade (Fig.1).
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Fig.1. Generic form of mixed lumped-distributed two-ports

The scattering matrix describing the mixed lumped-
distributed element two-port can be expressed in the
Belevitch canonical form as [1],
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where

*  f(p,A),g(p,A) and h(p,A) are real polynomials in
the complex variables pand A, (A =tanh pT ,T being
the delay length of unit elements).

*  g(p,A)is a Scattering Hurwitz polynomial,

*  f(p,A) ismonic and O is unimodular constant
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Let the real polynomials g(p,A)and A(p,A) with partial

degrees n, and n) be expressed as
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For the cascade topology under consideration, the
scattering matrix and hence the canonical polynomials
f(p,A),g(p,A) and h(p,A) have to satisfy some
additional independent conditions to ensure the
realizability as a passive lossless cascade structure. In this
regard, the followings may immediately be remarked:

a) For the mixed element lossless two-port, the
polynomial f(p,A) defines the transmission zeros of the
cascade and it is given by

f(p.A) = fo(p) /H(A) “

where, f,(p) and f,(A)contains the transmission zeros
due to the lumped sections and unit elements in the
cascade, respectively. If n, unit elements are considered
in cascade mode, then f1(A) =(1— A2)m ' In most of the
practical cases, it is appropriate to choose f,(p) as an
even/odd real polynomial, which corresponds to reciprocal

lumped structures. A particularly useful case is obtained
for f,(p)=1, which corresponds to a typical low-pass
structure having transmission zeros only at infinity. In this
case the polynomial f(p,A) takes the simple form

F(p,A)=(1=A)n"2 (5)

Another practical case is to choose f,(p)=p"”, which
corresponds to a typical high-pass structure.

b) When the transmission lines are removed from the
cascade structure, one would end up with a lumped
network whose scattering matrix can fully be described
independently in terms of the canonical real polynomials
fo(p).go(p) and hy(p) as in the Belevitch
representation (1) and (2). This would correspond to the
boundary case where we set A =0 in the scattering
description given by (1) and (2). In other words, the
boundary polynomials %(p,0),g(p,0) and f(p,0) define
the cascade of lumped sections which take place in the
composite structure, where g(p,0) is strictly Hurwitz and

g(p.0)g(=p.0) =h(p,0)h(=p,0)+ f(p,0)f(=p,0) (6)

¢) When the lumped elements are removed from the
cascade structure, one would obtain cascade connection of
transmission lines. In this case the resulting distributed
prototype whose transmission zeros are defined as
fi(A)=(1=2A*)""%can fully be described independently
in terms of three canonical real polynomials f;(A), g;(A)
and /;(A) as in the Belevitch representation (1). For the
particular case of low-pass type lumped sections described
by (5), setting p =0 in the scattering description given by
(1) results in the boundary polynomials f;(A)= f(0,A),
gi(A)=g(0,A) and A~ (A)=h(0,A). In this case, the
boundary polynomials %(0,A),g(0,A) and f(0,A) define
the cascade of UEs which take place in the composite
structure, where g(0,A) is strictly Hurwitz and

)= _ _,2"
2(0,4)g(0,-4) = h(0, )h(0,~1)+(1- 1% ) (7)

If the lumped sections in the cascade are assumed to be of
high-pass type, setting p=oc0, we end up with the
boundary polynomials #4(e,A)and g(e,A). In this case
the paraunitary relation (7) is modified as,

(00, A)g(00,~7) = h(eo, AYh(co,~A) + (1= A2)'A | (8)

where g(o0,A) is strictly Hurwitz . The more general cases
with finite transmission zeros in lumped sections can also
be treated following a similar reasoning.

d) The
h(p,0), g(p,0)

single variable boundary polynomials
related by (6) and #4(0,A), g(0,A)
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satisfying the relation (7) define the first row and the first
column entries of A, and A, matrices. Now the problem
is to generate the remaining unknown entries, which carry
the cascade connection information so that the two-
variable paraunitary relation (2d) is satisfied together with
the boundary conditions introduced in (a) and (b).

A. Fundamental Equation Set

For the generation of canonic polynomials
f(p,A),g(p,A) and h(p,A)in realizable form, the
solution of the two-variable paraunitary relation is
essential. By equating the coefficients of the same powers
of the complex frequency variables in the equality (2), we
end up with the following set of equations:
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The solution of the above equation set for the
coefficients g;; of g( p,A)is equivalent to the factorization
of a two-variable polynomial, and therefore, the equation
set in (9) will be referred to as the Fundamental Equation
Set (FES). In order to end up with a realizable system, the
necessary constraints leading to an acceptable particular
solution must be established. This requires additional
coefficient constraints reflecting the connectivity
information for each class of cascade topology in order to

end up with a unique solution of FES. In this context, by
straightforward analysis, the coefficient constraints
leading to an explicit solution of FES can easily be
generated for symmetric structures or those regular
structures in which the lumped sections are confined to be
simple low-pass, high-pass or band-pass elements [2]-[3].

Based on the above discussion, we end up with the
following semi analytic procedure to construct two-
variable canonical polynomials:

Procedure:

e Assuming a regular cascaded structure as in Fig. 1,
select the number of lumped and distributed elements
(n,, ny) and the polynomial f(p,A).

* Choose the coefficients of the polynomials #(p,0) and
h(0,A) (or h(ew,A)) as the independent parameters and
generate the Hurwitz polynomials g(p,0)and g(0,A) (or
g(,A).) using (6) and (7) (or 8) respectively.

e In addition to the boundary conditions stated above,
establish further topologic constraints on the coefficients
for each class of regular cascade topology by analysis.
 Utilizing the boundary conditions and the coefficient
constraints in FES obtain the unknown coefficients.

B. Construction of regular ladders with Unit Elements

From the physical implementation point of view,
practical circuit configurations of common interest consist
of  commensurate lines  incorporating  lumped
discontinuities in low-pass or high-pass type lumped
elements. For those type regular structures, the proposed
semi-analytic approach has been successfully applied and
two-variable characterization for a variety of practical
mixed element circuits have been obtained [3]-[4].

III. EXTENSION OF REAL FREQUENCY
TECHNIQUE TO DESIGN AMPLIFIERS WITH
MIXED ELEMENT EQUALIZERS

In the design of broadband microwave amplifiers, the
fundamental problem is to realize lossless interstage
equalizers as well as front-end and back-end matching
networks so that the transfer of power from source to load
is maximized over a prescribed frequency band (Fig.2).
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Fig.2. Single stage amplifier with front-end and back-end
equalizers
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The well known Simplified Real Frequency Technique
(SRFT), which is based on the scattering description of the
equalizers and the active device provides an efficient tool
for the design of microwave amplifiers [5]-[6].

The extension of the real frequency technique for
designing equalizers with mixed elements require a unique
characterization of the matching network in terms of a
number of independent free parameters. The proposed
procedure in the previous section resides on the generation
of two-variable scattering functions for the lumped-
distributed cascaded networks. This procedure readily
leads us to the two-variable generalization of the SRFT,
which can be outlined as follows:

* In the description of mixed element two-ports, the real
normalized scattering parameters are generated from the
partially defined numerator polynomial #A(p,A)of the
input reflection function S;;(p,A) =h(p,A)/ g(p,A). The
mixed element structure is assumed to be separable into its
lumped and distributed parts which can in turn completely
be defined in terms of the corresponding % polynomials
h(p,0)and A(0,A), provided that the polynomials f(p,0)
and f'(0,A) are defined.

* Starting from the arbitrary, unconstraint coefficients of
h(p,0)and A(0,A), we generate the remaining unknown
coefficients of the polynomials#(p,A)and g(p,A) by
utilizing the connectivity information supplied for the
cascade structure.

* Then, the coefficients of the polynomials #4(p,0)and
h(0,A) are chosen as the independent unknowns of the
problem and determined to optimize the gain of the system
by means of a nonlinear search routine.

In the above procedure, there is no restriction on the
unknown real coefficients of the polynomials #4(p,0) and
h(0,A) . Therefore any unconstraint optimization routine
can be employed. The numeric in the optimization of gain
function is well behaved and the convergence becomes
much faster than the direct optimization of the element
values since the transducer gain of the structure written in
terms of coefficients of A(p,A) is quasi-quadratic. Once
the final forms of g(p,A)and h(p,A) are generated, the
mixed element realization can be obtained by employing
the algebraic decomposition technique on the polynomial
sets describing the lumped and distributed prototypes.

It is straightforward to extend the SRFT to design multi-
stage microwave amplifiers by generating the TPG in a
sequential manner.

IV. EXAMPLES

As an example, a double stage FET amplifier is
designed for 50 Ohm terminations. The proposed mixed
lumped and distributed circuit models are utilized as front-

end, back-end and interstage equalizers. The measured
scattering data available for the active device pair of HP 1-
Um gate packaged microwave transistors are directly
processed to obtain an octave band amplifier over the
frequency band of 4-8 GHz. As a result of design
process, the obtained matched amplifier system has an
average gain level of 13.5 dB over the design frequency
band. The design steps and the considerations on the final
circuit realization will be discussed due to space
limitations in the conference.

V. CONCLUSION

A computer aided design technique for broadband
microwave amplifiers employing distributed equalizers
with lumped discontinuity models is presented. The
method is based on the two variable description of lossless
matching equalizers on a scattering basis. For the
generation of scattering functions in two complex
frequency variables a semianalytic approach is deviced
and extended to the real frequency design of lossless
equalizers of broadband amplifiers. The possibility of
incorporating the studied regular mixed lumped-
distributed topologies to model the discontinuities and
interconnects of a disrtibuted design is discussed and the
use of the method is illustrated by design examples.
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