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Abstract  �  This paper will addres the use of mixed 
lumped and distributed elements in the matching equalizers 
of microwave amplifers for hybrid and monolithic MIC 
realizations. In this work we show how the computer aided  
real frequency  technique  can be extended to design 
broadband amplifiers employing distributed equalizers with 
lumped discontinuities. The scattering based two-variable 
description of lossless equalizers with mixed lumped-
distributed elements will be discussed and the potential 
benefits of the approach will be indicated by examples. 

I. INTRODUCTION 

Because of the need for miniaturization of large-scale 
microwave systems, there is a great deal of effort being 
directed towards the area of Microwave Integrated Circuits 
(MIC) in hybrid or monolithic form. MIC design of 
amplifiers require that active and passive device models 
are fully developed and the circuit-design approach is 
through and well disciplined. In the design process, 
besides the active devices, refined models are needed for 
treatment of device to circuit medium interfaces 
incorporating parasitic effects and junction discontinuities.  
In this regard, utilization of  mixed lumped and distributed 
circuits to model the front-end, back-end  and interstage 
equalizers of an amplifier and the interconnects, would  
offer advantages for  accurate simulation of  MIC layouts, 
where the physical sizes, parasitics and discontinuities are 
naturally embedded in the design process.  

In the well known real frequency design techniques, the 
complex variable ωσ j+=p  is employed in the 
descriptive network functions, which yields lumped 
element circuit components in matching equalizers. 
Utilizing the hybrid or monolithic integrated circuit 
production technologies, it is possible to built lumped 
circuit elements up to 10 GHz. Beyond these frequencies 
however, physical sizes must be included in the design 
process.  In this case, equal delay transmission lines are 
employed in the designs, where the complex variable p  is 
replaced with the Richard variable Ω+Σ= jλ , 
where ωτtan=Ω and τ specifies the equal delay length of 

transmission lines. For a more accurate simulation of the 
MIC layout, mixed lumped and distributed elements need 
to be used, where the physical connection of lumped 
elements can be covered with transmission lines and 
parasitic of the discontinuities can be imbedded into 
lumped elements. In this case, it is necessary to carry out 
all the designs in at least two variables namely, p  for 
lumped elements and λ for equal delay transmission lines. 

In this work we show how the computer aided  real 
frequency  technique for broadband amplifiers can be 
extended to design distributed equalizers with lumped 
discontinuities. Considering a general amplifier 
configuration with front-end and back-end equalizers of 
mixed lumped-distributed element type, the proposed 
design procedure involves the following major steps:  

The active device is assumed to be characterized by a 
set of measured scattering data. The mixed element 
equalizers on the other hand are described by the 
scattering functions in two complex frequency variables, 
namely the conventional p  for the lumped elements and λ 
for the transmission lines. Then, the formulation of  the 
simplified real frequency algorithm is extended to the  
two-variable description of the equalizers, where the 
partially defined polynomials describing the scattering 
functions in two-varibles are constructed by  optimization 
of the transducer power gain  of the overall amplifier 
structure together with matching equalizers.  

II.  CONSTRUCTION OF TWO-VARIABLE 
SCATTERING FUNCTIONS FOR LOSSLESS TWO-

PORTS FORMED WITH LUMPED AND 
DISTRIBUTED ELEMENTS 

A typical distributed equalizer network with lumped 
discontinuities can be modeled in the generic form of a 
lossless two-port formed with cascade connections of 
lumped elements and commensurate transmission lines 
(Unit Elements), where the lumped elements represent the 
discontinuities in the cascade (Fig.1).   
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Fig.1. Generic form of mixed lumped-distributed two-ports 

The scattering matrix describing the mixed lumped-
distributed element two-port can be expressed in the 
Belevitch canonical form as [1], 
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where  
• ),( λpf , ),( λpg  and ),( λph are real polynomials in 

the complex variables p and λ, ( τλ ptanh= ,τ being 
the delay length of  unit elements). 

• ),( λpg is a Scattering Hurwitz polynomial,  
• ),( λpf  is monic and σ  is unimodular constant 
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Let the real polynomials ),( λpg and ),( λph with partial 
degrees pn and λn be expressed as  

λλ g
Tppg Λ=),(  and λλ h

Tpph Λ=),( ,        (3) 

where [ ]pnT pppp L21=  , [ ]λλλλλ nT L21=  and 





















=Λ

λ

λ

λ

nnnn

n

n

g

ppp
ggg

ggg
ggg

L

MOMM

L

L

10

11110

00100

,





















=Λ

λ

λ

λ

nnnn

n

n

h

ppp
hhh

hhh
hhh

L

MOMM

L

L

10

11110

00100

 

For the cascade topology under consideration, the 
scattering matrix and hence the canonical polynomials 

),( λpf , ),( λpg  and ),( λph  have to satisfy some 
additional independent conditions to ensure the 
realizability as a passive lossless cascade structure. In this 
regard, the followings may immediately be remarked:  

a) For the mixed element lossless two-port, the 
polynomial ),( λpf  defines the transmission zeros of the 
cascade and it is given by  

  )()(),( 10 λλ fpfpf =  ,       (4) 

where, )(0 pf  and )(1 λf contains the transmission zeros 
due to the lumped sections and unit elements in the 
cascade, respectively. If λn  unit elements are considered 
in cascade mode, then 2/2

1 )1()( λλλ nf −= . In most of the 
practical cases, it is appropriate to choose )(0 pf  as an 
even/odd real polynomial, which corresponds to reciprocal 

lumped structures. A particularly useful case is obtained 
for 1)(0 =pf , which corresponds to a typical low-pass 
structure having transmission zeros only at infinity. In this 
case the polynomial ),( λpf  takes the simple form  

  2/2 )1(),( λλλ npf −=  .       (5) 

Another practical case is to choose pnppf =)(0 , which 
corresponds to a typical high-pass structure. 

b) When the transmission lines are removed from the 
cascade structure, one would end up with a lumped 
network whose scattering matrix can fully be described 
independently in terms of the canonical real polynomials 

)(0 pf , )(0 pg  and )(0 ph  as in the Belevitch 
representation (1) and (2). This would correspond to the 
boundary case where we set 0=λ  in the scattering 
description given by (1) and (2). In other words, the 
boundary polynomials )0,(),0,( pgph  and )0,( pf  define 
the cascade of lumped sections which take place in the 
composite structure, where )0,( pg  is strictly Hurwitz and  

)0,()0,()0,()0,()0,()0,( pfpfphphpgpg −+−=−    (6) 

c) When the lumped elements are removed from the 
cascade structure, one would obtain cascade connection of 
transmission lines. In this case the resulting distributed 
prototype whose transmission zeros are defined as 

2/2
1 )1()( λλλ nf −= can fully be described independently 

in terms of three canonical real polynomials )(1 λf , )(1 λg  
and )(1 λh  as in the Belevitch representation (1). For the 
particular case of low-pass type lumped sections described 
by (5), setting 0=p  in the scattering description given by 
(1) results in the boundary polynomials )(1 λf = ),0( λf , 

)(1 λg = ),0( λg  and )(1 λh = ),0( λh . In this case, the 
boundary polynomials ),0(),,0( λλ gh  and ),0( λf  define 
the cascade of UEs which take place in the composite 
structure, where ),0( λg  is strictly Hurwitz and 

 λn
)2λ(λ),λ)h(,h(λ),λ)g(,g( −+−=− 10000    (7) 

If the lumped sections in the cascade are assumed to be of 
high-pass type, setting ∞=p , we end up with the 
boundary polynomials ),( λ∞h and ),( λ∞g . In this case 
the paraunitary relation (7) is modified as,  

λλλλλλ
n

hhgg )21(),(),(),(),( −+−∞∞=−∞∞ ,  (8) 

where ),( λ∞g is strictly Hurwitz . The more general cases 
with finite transmission zeros in lumped sections can also 
be treated following a similar reasoning. 

d) The single variable boundary polynomials 
)0,(),0,( pgph  related by (6) and ),0( λh , ),0( λg  
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A 

satisfying the relation (7) define the first row and the first 
column entries of hΛ and gΛ matrices. Now the problem 
is to generate the remaining unknown entries, which carry 
the cascade connection information so that the two-
variable paraunitary relation (2d) is satisfied together with 
the boundary conditions introduced in (a) and (b).  

A. Fundamental Equation Set 

For the generation of canonic polynomials 
),( λpf , ),( λpg  and ),( λph in realizable form, the 

solution of the two-variable paraunitary relation is 
essential. By equating the coefficients of the same powers 
of the complex frequency variables in the equality (2), we 
end up with the following set of equations: 
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The solution of the above equation set for the 
coefficients ijg of ),( λpg is equivalent to the factorization 
of a two-variable polynomial, and therefore, the equation 
set in (9) will be referred to as the Fundamental Equation 
Set (FES). In order to end up with a realizable system, the 
necessary constraints leading to an acceptable particular 
solution must be established. This requires additional 
coefficient constraints reflecting the connectivity 
information for each class of cascade topology in order to 

end up with a unique solution of FES. In this context, by 
straightforward analysis, the coefficient constraints 
leading to an explicit solution of FES can easily be 
generated for symmetric structures or those regular 
structures in which the lumped sections are confined to be 
simple low-pass, high-pass or band-pass elements [2]-[3]. 

Based on the above discussion, we end up with the 
following semi analytic procedure to construct two-
variable canonical polynomials: 

Procedure: 
•  Assuming a regular cascaded structure as in Fig. 1, 
select the number of lumped and distributed elements 
( pn , λn ) and the polynomial ),( λpf . 
•  Choose the coefficients of the polynomials )0,( ph and 

),0( λh  (or ),( λ∞h ) as the independent parameters and 
generate the Hurwitz polynomials )0,( pg and ),0( λg (or 

),( λ∞g .) using (6) and (7) (or 8) respectively.  
•  In addition to the boundary conditions stated above, 
establish further topologic constraints on the coefficients 
for each class of regular cascade topology by analysis. 
•  Utilizing the boundary conditions and the coefficient 
constraints in FES obtain the unknown coefficients.  

B. Construction of regular ladders with Unit Elements 

From the physical implementation point of view, 
practical circuit configurations of common interest consist 
of commensurate lines incorporating lumped 
discontinuities in low-pass or high-pass type lumped 
elements. For those type regular structures, the proposed 
semi-analytic approach has been successfully applied and 
two-variable characterization for a variety of practical 
mixed element circuits have been obtained  [3]-[4].  

III.  EXTENSION OF REAL FREQUENCY 
TECHNIQUE TO DESIGN AMPLIFIERS WITH 

MIXED ELEMENT EQUALIZERS 

In the design of broadband microwave amplifiers, the 
fundamental problem is to realize lossless interstage 
equalizers as well as front-end and back-end matching 
networks so that the transfer of power from source to load 
is maximized over a prescribed frequency band (Fig.2).  

 
 
 
 
 
 
 
 
Fig.2. Single stage amplifier with front-end and back-end 
equalizers 
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The well known Simplified Real Frequency Technique 
(SRFT), which is based on the scattering description of the 
equalizers and the active device provides an efficient tool 
for the design of microwave amplifiers [5]-[6].  

The extension of the real frequency technique for 
designing equalizers with mixed elements require a unique 
characterization of the matching network in terms of a 
number of independent free parameters. The proposed 
procedure in the previous section resides on the generation 
of two-variable scattering functions for the lumped-
distributed cascaded networks. This procedure readily 
leads us to the two-variable generalization of the SRFT, 
which can be outlined as follows: 
•  In the description of mixed element two-ports, the real 
normalized scattering parameters are generated from the 
partially defined numerator polynomial ),( λph of the 
input reflection function ),(/),(),(11 λλλ pgphpS = . The 
mixed element structure is assumed to be separable into its 
lumped and distributed parts which can in turn completely 
be defined in terms of the corresponding h  polynomials 

)0,( ph and ),0( λh , provided that the polynomials )0,( pf  
and ),0( λf are defined.  
 •  Starting from the arbitrary, unconstraint coefficients of 

)0,( ph and ),0( λh , we generate the remaining unknown 
coefficients of the polynomials ),( λph and ),( λpg  by 
utilizing the connectivity information supplied for the 
cascade structure.  
•  Then, the coefficients of the polynomials )0,( ph and 

),0( λh  are chosen as the independent unknowns of the 
problem and determined to optimize the gain of the system 
by means of a nonlinear search routine.  

In the above procedure, there is no restriction on the 
unknown real coefficients of the polynomials )0,( ph and 

),0( λh . Therefore any unconstraint optimization routine 
can be employed. The numeric in the optimization of gain 
function is well behaved and the convergence becomes 
much faster than the direct optimization of the element 
values since the transducer gain of the structure written in 
terms of coefficients of ),( λph  is quasi-quadratic. Once 
the final forms of ),( λpg and ),( λph  are generated, the 
mixed element realization can be obtained by employing 
the algebraic decomposition technique on the polynomial 
sets describing the lumped and distributed prototypes.  

It is straightforward to extend the SRFT to design multi-
stage microwave amplifiers by generating the TPG in a 
sequential manner. 

IV. EXAMPLES 

As an example, a double stage FET amplifier is 
designed for 50 Ohm terminations. The proposed mixed  
lumped and distributed circuit models are utilized as front-

end, back-end and interstage  equalizers.  The measured 
scattering data available for the active device pair of HP 1-
µm gate packaged microwave transistors are directly 
processed to obtain an octave band amplifier over the 
frequency band of  4-8 GHz.  As a result of design 
process, the obtained matched amplifier system has an 
average gain level of  13.5 dB over the design frequency 
band. The design steps and the considerations on the final 
circuit realization will be discussed  due to space 
limitations in the conference.  

V. CONCLUSION 

A computer aided design technique for broadband 
microwave amplifiers employing distributed equalizers 
with lumped discontinuity models is presented. The 
method is based on the two variable description of lossless 
matching equalizers on a scattering basis. For the 
generation of scattering functions in two complex 
frequency variables a semianalytic approach  is deviced 
and extended to the real frequency design of lossless 
equalizers of broadband amplifiers. The possibility of 
incorporating the studied regular mixed lumped-
distributed topologies to model the discontinuities and 
interconnects of a disrtibuted design is discussed and the 
use of the method is illustrated by design examples. 
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